
IrisSDK Orca™ API
UG211201

IrisSDK ORCA™ API
User Guide 211201

Version 1.7

This document applied to the following Orca Series motor firmware:

● 6.1.4
● 6.1.5
● 6.1.6
● 6.1.7

Notes for firmware versions earlier than 6.1.6: Force returned uses a legacy unit instead of mN. The
conversion rate between mN and legacy units is different for each motor type (1 legacy unit ≈
10mN for orca 6-24, but 1 legacy unit ≈ 21mN for orca 6-48 and 1lu ≈ 23.3mN for 15-48.

Prior to 6.1.6 functions related to the kinematic controller are not available.

Prior to 6.1.7 functions related to the haptic controller and different streaming modes are not
available.

For more recent firmware versions, please download the latest version of this user guide at
https://irisdynamics.com/downloads

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 1/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/downloads
https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

CONTENTS

REVISION HISTORY 5
Actuator Class Overview 7

Public Types 8
StreamMode 8
MotorMode 8
HapticEffect 8
ConnectionConfig 8

Public Functions 10
set_mode(MotorMode mode) 10
get_mode() 10
set_stream_mode(StreamMode mode) 10
get_stream_mode() 10
update_write_stream(u8 width, u16 reg_addr, u32 reg_value) 10
update_read_stream(u8 width, u16 reg_addr) 10
set_force_mN(s32 force) 10
set_position_um(s32 position) 10
get_force_mN() 10
get_position_um() 10
enable_haptic_effects(u16 effects) 11
new_data() 11
set_stream_timeout(u32 timeout_us) 11
init() 11
get_num_successful_msgs() 11
get_num_failed_msgs() 11
run_out() 11
run_in() 11
isr() 11
get_name() 11
channel_number() 11
get_mode_of_operation() 12
get_power_W() 12
get_temperature_C() 12
get_voltage_mV() 12
get_errors() 12
get_serial_number() 12
get_major_version() 12
get_release_state() 12
get_revision_number() 12

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 2/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

version_is_at_least(u8 version, u8 release_state, u8 revision_number) 12
zero_position() 12
clear_errors() 12
get_latched_errors() 12
set_max_force(s32 max_force) 12
set_max_temp(u16 max_temp) 12
set_max_power(u16 max_power) 13
set_pctrl_tune_softstart(u16 t_in_ms) 13
set_safety_damping(u16 d_gain) 13
tune_position_controller(u16 p, u16 i, u16 dv, u32 sat, u16 de =0) 13
set_kinematic_config(s8 num_motions, s8 trig_period = 0, s8 HW_trig = 0) 13
set_kinematic_motion(s32 ID, s32 pos, s32 time, u16 delay, s8 type, s8 chain) 13
trigger_kinematic_motion(s32 ID) 13
set_spring_effect(u8 id, u16 gain, u32 center, u16 deadzone=0, u16 sat = 0, u8
coupling =0) 13
set_osc_effect(u8 id, u16 amplitude, u16 freq, u16 duty, u16 type) 13
read_register(u16 register_address) 13
read_registers(u16 register_address, u16 num_registers) 13
write_register(u16 register_address, u16 reg_data) 13
write_registers(u16 register_address, u16 num_registers, u16* reg_data) 14
get_orca_reg_content(u16 offset) 14

Inherited Functions 15
set_connection_config(ConnectionConfig config) 15
is_connected() 15
is_enabled() 15
enable() 15
disable() 15
disconnect() 15

Windows Only Functions 15
set_new_comport(s32 _comport) 15
disable_comport () 15

Detailed Description 16
Initializing the Object 16
Enabling and Disabling the High Speed Stream 16
Connection Status 16
Handshake Sequence 17

Step 1: Communication Check (Discovery) 17
Step 2: Register Contents Synchronization (Synchronization) 17
Step 3: Baud Rate and Messaging Delay Adjustment (Negotiation) 17

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 3/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Stream Modes (Orca v6.1.7 or later) 18
Motor Command 18
Motor Read 18
Motor Write 18

Motor Modes 19
Sleep Mode 19
Force Mode 19
Position Mode 19
Haptic Mode (Available with Orca firmware v6.1.7 or later) 19
Kinematic Mode (Available with Orca firmware v6.1.6 or later) 19

Injecting Other Commands into Stream 20
Accessing Retrieved Data 20
Error Types 21

Configuration Errors 21
Force Clipping 21
Temperature Exceeded 21
Force Exceeded 21
Power Exceeded 21
Shaft Image Failed 22
Communications Timeout 22

Basic Object Use Example 23

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 4/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

REVISION HISTORY
Version Date Author Reason
1.0 December, 2021 KE,

RM,
KH

Initial Release

1.1 April, 2022 RM Additional function revision
1.2 June, 2022 SW,

RM
Additional and updated function description, reordering
of information.
Changes to heading layer and table compressing

1.3 June, 2022 RM Remove references to private functions/properties
formatting, error descriptions
Clarify Actuator for object reference motor for device
reference

1.4 August, 2022 KC Title update, code section formatting
1.5 March, 2023 RM Add kinematic mode option. Add additional functions.

Change order of functions to match actuator.h,
1.6 April, 2023 AB Included descriptions of changes from 6.1.5 to 6.1.6
1.7 June, 2023 RM Multiple streaming mode options, haptic effect

functions, introduced in 6.1.7 firmware

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 5/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Actuator Class Overview
The Actuator object is used to establish and maintain a communication stream with an Orca™
Series linear motor. This object abstracts the Modbus RTU communications to control the motor.

Functions are available to command motors as desired and receive information from the motor
without having to interact with the serial communications protocol directly. This object can also
be used to manage a high speed stream of Modbus messages.

For a complete list of Orca Series motor available registers and complete details on motor
behaviour, see the Orca Series Motor Reference Manual.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 6/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Public Types
Type Description
enum StreamMode

Sets the type of command that will be sent when high-speed stream is enabled.
Name Value Description
MotorCommand 0 Sets the high-speed stream

command to send a motor
command function code.

MotorRead 1 Sets the high-speed stream
command to send motor read
function code.

MotorWrite 2 Sets the high-speed stream
command to send motor write
function code.

enum MotorMode
Different modes of operations available to the motor, affects the type of motor command
that can be streamed to the motor.
Name Value Description
SleepMode 1 Puts the motor into Sleep Mode

(electrical brake).
ForceMode 2 Motor command writes to

ForceControl register.
PositionMode 3 Motor command writes to

PositionControl register.
HapticMode 4 Puts the motor into Haptic Mode .
KinematicMode 5 Puts the motor into Kinematic Mode.

enum HapticEffect
Bits related to haptic effects
Name Value Description
ConstF 1 << 0 Constant force effect
Spring0 1 << 1 First spring effect
Spring1 1 << 2 Second spring effect
Spring2 1 << 3 Third spring effect
Damper 1 << 4 Damper effect
Inertia 1 << 5 Inertia effect
Osc0 1 << 6 First oscillator effect (vibration)
Osc1 1 << 7 Second oscillator effect (vibration)

struct ConnectionConfig
Contains parameters used to configure aspects of the handshake and connection
maintenance with the motor.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 7/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Variable Type Default Description
server_address u8 1 The motor’s Modbus Server ID.
req_num_discovery_ping s32 3 The number of successful ping

message responses required to
move to the next step of the
handshake.

max_consec_failed_msgs s32 5 The number of consecutive failed
responses to trigger a disconnect.

target_baud_rate_bps u32 62500
0

Baud rate requested for stream
connection once handshake has
been completed.

target_delay_us u16 80 Delay between received message
and next outgoing message once a
connection has been established.

response_timeout_us u32 8000 The time to wait for a response to a
sent message once a connection
has been established.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 8/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Public Functions
Return Type Function Call and Description
void set_mode(MotorMode mode)

Changes the Actuator object’s motor mode which determines the type of
commands being streamed by the motor when enabled. This command will
also inject a message to write to the motor’s mode control register.

MotorMode get_mode()
Returns the current motor mode of the Actuator Object. Used to determine
which type of command is being streamed to the motor.

void set_stream_mode(StreamMode mode)
Sets the type of high-speed stream to be sent on run out once the handshake
is complete.

StreamMode get_stream_mode()
Gets the current stream type to be sent on run out once the handshake is
complete.

void update_write_stream(u8 width, u16 reg_addr, u32 reg_value)
This function updates the values being sent when inmotor write stream
mode. The function can be continuously called. Single or double wide
registers can be used. Some of the double wide registers include
FORCE_CMD, POSITION_CMD, CONSTANT_FORCE_MN, S0_CENTER_UM, etc.

void update_read_stream(u8 width, u16 reg_addr)
This function updates the values being sent when inmotor read streammode.
This function can be continuously called. Single or double wide registers can
be used. Some of the double wide registers include FORCE_CMD,
POSITION_CMD, CONSTANT_FORCE_MN, S0_CENTER_UM, etc.

void set_force_mN(s32 force)
Sets/adjusts the force, in millinewtons. Written to the motor’s Force Control
Register when sending the motor command stream and mode is set to Force
Mode.

void set_position_um(s32 position)
Sets/adjusts the position, in micrometers. Written to the motor’s Position
Control Register when sending the motor command stream and mode is set
to Position Mode.

s32 get_force_mN()
Returns the force sensed by the motor in milliNewtons.

s32 get_position_um()
Returns the position of the shaft in the motor (distance from the zero
position) in micrometers.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 9/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

void enable_haptic_effects(u16 effects)
Writes to the HAPTIC_STATUS register to set which haptic effects will be
enabled when the motor is in Haptic Mode. Bits to enable each effect are
defined in the HapticEffect enum.

bool new_data()
Determines if new data has been received from the motor since the function
was last called.
Returns true if new data has been written to the Actuator object’s local copy
of the motor’s memory map, returns false otherwise.

void set_stream_timeout(u32 timeout_us)
Sets the maximum time between calls to set_force or set_position, in Force or
Position Mode respectively, before timing out and returning to Sleep Mode.

void init()
Initializes Modbus communication between the motor and the controller’s
communication port using the default baud rate (19200 Bps).

u16 get_num_successful_msgs()
Returns the number of successfully received messages that have been sent
and responded to without error.

u16 get_num_failed_msgs()
Returns the number of failed messages that have either timed out without a
response or have received an incomplete or inaccurate response.

void run_out()
When a motor is enabled, this function dispatches transmissions for motor
frames when connected and dispatches handshake messages when not. It must
be called frequently. When a motor is not enabled this call will send out
messages in the queue.

void run_in()
This function should be called as frequently as possible. It polls for timeouts
and parses responses from the message queue. This function is used to
maintain the connection state based on failed messages and parses
successful messages.

void isr()
Provides access to the device driver’s interrupt service routine function for
linking to an interrupt handler.

const char * get_name()
Returns the name given to the Actuator object.

s32 channel_number()
Returns the COM port (or UART channel number).

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 10/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

u16 get_mode_of_operation()
Returns the mode of operation as currently updated in the local memory
maps.

u16 get_power_W()
Returns the amount of power being drawn by the motor in Watts.

u8 get_temperature_C()
Returns the temperature of the motor in degrees Celsius.

u16 get_voltage_mV()
Returns the amount of voltage the motor is receiving in millivolts.

u16 get_errors()
Returns the sum of all error messages currently sent by the motor.
See Error Types for detailed descriptions of errors.

u32 get_serial_number()
Returns the motor’s serial number

u16 get_major_version()
Returns the major version of the firmware on the motor.

u16 get_release_state()
Returns the release state (minor version) of the firmware on the motor.

u16 get_revision_number()
Returns the revision number of the firmware on the motor.

bool version_is_at_least(u8 version, u8 release_state, u8 revision_number)
Returns true if the motor's firmware version is 'at least as recent' as the
version designated by the parameters, and false otherwise.

void zero_position()
Sends a single command to the motor to use its current position as the zero
position.

void clear_errors()
Requests that all errors are cleared from the motor. Removes latched errors.

void get_latched_errors()
Copies the register holding the codes for latched errors from the motor’s
memory map into the local memory map. Latched errors are errors that were
found but are no longer active.

void set_max_force(s32 max_force)
Set the maximum force that the motor will allow before clipping and tripping
the Force Exceeded error.

void set_max_temp(u16 max_temp)
Set the maximum allowable temperature for the motor in degrees Celsius.
Associated with the Temperature Exceeded error.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 11/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

void set_max_power(u16 max_power)
Set the maximum allowable power for the motor in Watts. Associated with
the Power Exceeded error.

void set_pctrl_tune_softstart(u16 t_in_ms)
Sets the fade period when changing position controller tune in milliseconds.

void set_safety_damping(u16 d_gain)
Sets the motion damping gain value used when communications are
interrupted.

void tune_position_controller(u16 p, u16 i, u16 dv, u32 sat, u16 de =0)
Sets the PID tuning values on the motor (proportional, integral, derivative,
maximum force). The sat value determines the maximum force the motor will
output while trying to reach the target position.

void set_kinematic_config(s8 num_motions, s8 trig_period = 0, s8 HW_trig = 0)
Set the number of motions to be configured. Also sets the debounce and
enables hardware triggering. Enabling the hardware trigger will disable
Modbus communications. The default number of motions is 1.
(after v6.1.7 num motions will always be 32 and is not adjustable)

void set_kinematic_motion(s32 ID, s32 pos, s32 time, u16 delay, s8 type, s8 chain)
Sets the parameters to define a kinematic motion. Defines a single
movement. Multiple movements can be defined and chained together.

void trigger_kinematic_motion(s32 ID)
Triggers the start of a kinematic motion with the specified ID. Any chained
motions will also run.

void set_spring_effect(u8 id, u16 gain, u32 center, u16 deadzone=0, u16 sat = 0, u8
coupling =0)
Configures all parameters of a haptic spring effect.

void set_osc_effect(u8 id, u16 amplitude, u16 freq, u16 duty, u16 type)
Configures all parameters of a haptic oscillation effect.

void read_register(u16 register_address)
Request a read of a register from the motor’s memory map. This will update
the Actuator object’s local copy of the memory map once a response is
received.

void read_registers(u16 register_address, u16 num_registers)
Requests a read of sequential registers from the motor’s memory map This
will update the Actuator object’s local copy of the memory map once a
response is received.

void write_register(u16 register_address, u16 reg_data)
Requests for a specific register in the motor's memory map to be updated
with a given value.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 12/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

void write_registers(u16 register_address, u16 num_registers, u16* reg_data)
Requests for multiple registers in the motor's memory map to be updated
with a given array of values.

u16 get_orca_reg_content(u16 offset)
Returns the contents of the input register from the Actuator object’s copy of
the motor’s memory map.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 13/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Inherited Functions
Return Type Name and Description
s32 set_connection_config(ConnectionConfig config)

Applies the handshake/connection configuration parameters passed in the
ConnectionConfig struct.
Returns 0 if one of the parameters was invalid and default values were used,
1 otherwise.

bool is_connected()
Determines whether the device using the Actuator object has completed a
successful handshake to connect with the motor.

bool is_enabled()
Determines if communication with the motor is enabled or not.

void enable()
Enables high-speed communication with a motor. Allows the handshake
sequence to begin and enables transceiver hardware.

void disable()
Disables high-speed communication with the motor.

void disconnect()
Moves to disconnected state of high-speed connection and reset
connection variables.

Windows Only Functions
Return Type Name and Description
bool set_new_comport(s32 _comport)

Changes the comport associated with the motor’s Modbus connection.
void disable_comport ()

Closes the comport associated with a motor’s Modbus connection.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 14/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Detailed Description
The Actuator object is used to establish and maintain a connection with an Orca Series motor. In
this context, a connection is a consecutive stream of messages to and from the motor in which
either a target force, a target position, or a sleep directive is commanded, and a response is
received which provides information about the position, force, temperature, power, voltage, and
errors.

Timing and framing for the stream are handled automatically by the Actuator class, with the user
being simply required to call the class’s run_in() and run_out() functions regularly.

Current device information such as position, force, temperature, etc., can then be accessed using
the provided get functions. Additional functions are available for configuration of the connection
and motor parameters, such as limiting maximum power draw, forces, temperatures, etc.

The purpose of this object is to encapsulate the Modbus communication protocol, hiding it from
the user, and abstracting the concept of an Actuator to allow the user to provide clear directives to
an Orca Series motor.

To construct an instance of this object, pass the channel/port on your device that the
corresponding motor will be connected to, as seen in the object use example.

Initializing the Object
Initializing is done by calling the init() function which should be done before attempting any
communication. This will set up the appropriate communication channel (UART or serial) with the
appropriate timers and interrupts as required for the device.

Enabling and Disabling the High Speed Stream
The enabled status can be changed at any time by calling enable() or disable().

Any desired changes to the ConnectionConfig struct should be made prior to enabling as it will
use the current values during the handshaking sequence when establishing a connection.

The enabled status of the object determines if a high-speed communication stream with the
motor will be attempted and can be determined by calling is_enabled().

When disabled, only injected commands will be sent. Configurations such as handshake
parameters should be changed while the object is disabled.

When enabled, messages will be transmitted and received according to the connection status and
communication mode.

Connection Status
The connection status can be checked by calling is_connected(). The connected state implies that
valid high-speed communication with the motor has been established and messages are being
sent as determined by the Stream Mode (Orca firmware v6.1.7 or later, prior firmware will only use
motor command messages when streaming).

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 15/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

The Actuator object is in the disconnected state upon initialization and remains in this state until it
has completed a successful handshake sequence with the motor device.

When disconnected and enabled, the object sends regular pings to check for a motor device. By
default, the baud rate used for pings is 19200 bps.

When connected, the Actuator object maintains a constant stream of messages to and from the
motor. The content of this message stream depends on the communication mode, which can be
changed by calling set_mode().

The motor will transition from connected to disconnected if several consecutive failed messages
are detected. The number of failed messages which constitutes a disconnection can be modified
by adjusting the max_consec_failed_msgs variable from the ConnectionConfig struct before
calling set_connection_config().

Following a disconnect, the Actuator object will pause communications to allow the server to
reset to the default baud rate and messaging delays, then resumes sending pings to attempt to
re-establish communications.

Handshake Sequence
The Actuator object will reach the connected state after completing the steps of the handshake
sequence. The sequence is managed automatically from the run_out() function and does not
need to be invoked by the user. Below is a description of the class's behavior while connecting.

Step 1: Communication Check (Discovery)
Successful communication is established by receiving consecutive successful responses to a
ping message which expect an echo response.

The number of required successful consecutive messages can be changed by adjusting the
req_num_discovery_pings variable from the ConnectionConfig struct before calling
set_connection_config().

Step 2: Register Contents Synchronization (Synchronization)
Next, a series of read register requests will be sent to update relevant sections of the local copy of
the motor’s register contents.

Step 3: Baud Rate and Messaging Delay Adjustment (Negotiation)
Lastly, a command will be sent to adjust the value of the baud rate and messaging delay registers
in the actuator.

The new baud rate, if different from the default 19200 bps, must be adjusted using the
target_baud_rate_bps variable from the ConnectionConfig Struct and set_connection_config()
method described previously. The new delay, if different from the default, must be adjusted, in
microseconds, using the target_delay_us variable from the ConnectionConfig Struct and
set_connection_config() method described previously.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 16/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Stream Modes (Orca v6.1.7 or later)
Motor Command
This stream mode will send messages to the Orca motor that will return information about the
motor’s status information position, force, power, temperature, voltage, and errors. In Position or
Force mode the target values that are set in set_force_mN() and set_position_um() will be
commanded to the motor. Calling the functions to update the force and position will start a timer.
In this streaming mode it is required that set_force_mN() and set_position_um() are called faster
than the stream_trimeout_cycles which defaults to 100 ms and can be adjusted using the
set_stream_timeout() function.

In other modes no specific commands are sent to the motor other than setting the mode of
operation.

Motor Read
In this mode a specified register (either single or double wide) can be read from. The response to
this stream will be the value in the register as well as the motor’s mode of operation, position,
force, power, temperature, voltage, and errors.

The register to read from can be updated through the update_read_stream() function.

Motor Write
In this mode a specified register (either single or double wide) can be written to. The response to
this stream will be the motor’s mode of operation, position, force, power, temperature, voltage, and
errors.

The register to write to and the value to write from can be updated through the
update_write_stream() function.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 17/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Motor Modes
When high-speed streams are enabled the Actuator class stream will be different depending on
the selected motor mode.

To check or change the communication mode, use the get_mode() and set_mode() functions
respectively.

Sleep Mode
The command sent in this mode puts the motor into Sleep Mode where the motor will only
produce an electro-mechanical ‘braking’ force induced by shorting all its windings. No other force
generation will be possible, regenerative braking is disabled, and motor power consumption will
be minimized.

Force Mode
When in Force Mode the motor will seek to reach its target force. This target will either come from
the value set using the set_force_mN(s32 force) function when in Motor Command stream mode,
or the last value written to the FORCE_CMD register when in other streaming modes.
Position Mode
When in Position Mode the motor will seek to reach its target position. This target will either come
from the value set using the set_position_um(u32 position) function when in Motor Command
stream mode; or the last value written to the POSITION_CMD register when in other streaming
modes.

The motor uses PID control to achieve the target position, to tune the values used by the motor
call the tune_position_controller(u16 p, u16 i, u16 d, u32 sat) function.

Haptic Mode (Available with Orca firmware v6.1.7 or later)
The messages sent in Motor Command stream mode will put the motor into haptic mode without
sending any additional commands. The configured effects can be enabled or disabled by using
the enable_haptic_effects(uint16_t effects) function. The effects can either be configured through
the motor’s IrisControls GUI or by writing to the registers in the Haptic section of the memory
map. If attempting to continuously update an effect parameter this should be done by setting the
mode to Haptic Mode and using the motor write stream mode to update the specified effect
parameter.

Kinematic Mode (Available with Orca firmware v6.1.6 or later)
The messages sent in motor command stream mode sent in this mode will put the motor into
Kinematic Mode without sending any additional commands. This is for injection of messages to
trigger kinematic motions while maintaining the stream of returned data. In Kinematic Mode the
position controller will be used to follow the targets specified by the kinematic controller. Motion
IDs can either be configured through the motor’s IrisControls GUI or using
set_kinematic_motion(s32 ID, s32 pos, s32 time, u16 delay, s8 type, s8 chain). Any configured
motion can be triggered using the trigger_kinematic_motion(s32 ID) function.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 18/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Injecting Other Commands into Stream
Other messages can be injected into the stream of Stream Command messages when required.
For example, the position could be zeroed, the position controller could be tuned, or individual
registers in the memory map could be written to or read from.

The Actuator object will send any messages injected before continuing to send Stream Command
messages and will do so while respecting the appropriate delays required as configured in
ConnectionConfig struct.

The number of single commands that can be injected into the stream within a certain time frame
is restricted by the size of the message buffer queue used by the MODBUS client serial layer. To
adjust the size of the queue, adjust the NUM_MESSAGES definition in shared\mb_config.h to one
of the preset options.

Accessing Retrieved Data
The position, power, force, temperature, voltage, and error data returned by the motor in each of
the above modes can be retrieved using the following series of "get" functions.

● u16 get_orca_reg_content(u16 reg_address)
● s32 get_force_mN()
● s32 get_position_um()
● u16 get_power_W()
● u8 get_temperature_C()
● u16 get_voltage_mV()
● u16 get_errors()

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 19/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Error Types
The motor will generate error codes when a user setting, or a device limit is reached or exceeded.
Depending on the error, certain features will not be available until the error is cleared. Motor errors
are communicated as a series of bit flags. There may be a combination of multiple errors. For
example, error 320 would be a Temperature Exceeded (64) + a Power Exceeded (256). Provided
the error does not persist, it can be cleared using clear_errors().

Error Mask Trigger Level Registers Modules Disabled Cleared By
Configuration

Errors
1

(0x001F) - Position, Force Calibration
Routines

Force
Clipping

32
(0x0020) - - Automatically

Temperature
Exceeded

64
(0x0040)

USER_MAX_TEMP
MAX_TEMP

Position, Force,
Calibration Sleep Mode

Force
Exceeded

128
(0x0080) USER_MAX_FORCE - Automatically

Power
Exceeded

256
(0x0100)

USER_MAX_POWER
MAX_POWER Position, Force Sleep Mode

Shaft Image
Failed

512
(0x0200) - Position, Force

Sleep Mode +
Insert or

Calibrate Shaft

Voltage
Invalid

1024
(0x0400)

MIN_VOLTAGE
MAX_VOLTAGE

Position, Force,
Calibration

Sleep Mode +
Providing a valid
voltage source

Comms
Timeout

2048
(0x0800)

USER_COMMS_TIMEOUT
COMMS_TIMEOUT Position, Force Sleep Mode

Configuration Errors
These errors indicate calibrations or settings have not been done or have been made invalid.

Force Clipping
Requested force too large. This error has no effect on operation except to inform the user that
linear force output has been compromised.

Temperature Exceeded
When the temperature of the stator windings or of the motor driver exceeds the device or user-set
maximum.

Force Exceeded
When the measured force output of the motor exceeds the user-set force limit.

Power Exceeded
When the power burned in the stator exceeds the device or user-set maximum value.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 20/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

If this error is experienced, either the maximum power user setting can be increased, or the
maximum force user setting should be decreased. (set_max_power() or set_max_force())
If the position controller (i.e. Position Mode) is causing this error, the saturation level can also be
decreased to prevent this error (tune_position_controller()).

Shaft Image Failed
If the shaft image is detected to be invalid, the shaft might not be inserted, it might be an invalid
shaft for the device, or the device may require a calibration.

Communications Timeout
When in Force or Position Mode, a steady stream of communications must be successfully
received to avoid this error. Users can make the communications timeout shorter than the default
setting by writing a non-zero value to the USER_COMMS_TIMEOUT register. This register has
units of milliseconds.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 21/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/


IrisSDK Orca™ API
UG211201

Basic Object Use Example
Below is an example program that initializes the Actuator object, sets its connection parameters,
and begins requesting a certain force from an initial position. The data returned is then retrieved
and stored in a local variable for further analysis.

#include "modbus_client/device_applications/actuator.h"

//Constructor(channel, name, cycles per microsecond)
Actuator motor(5, "Motor 1", 1);

s32 target_force;

int main(){
motor.init();
motor.enable();
motor.set_mode(Actuator::ForceMode);

while(1){
update_target_value(); //some function to update the target
motor.set_force_mN(target_force); //Update the force command sent to motor
motor.run_in(); //Parse incoming messages
motor.run_out(); //Send handshake and command messages to the motor

}
}

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 22/22
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

